HAAD: A Quick Algorithm for Accurate Prediction of Hydrogen Atoms in Protein Structures

نویسندگان

  • Yunqi Li
  • Ambrish Roy
  • Yang Zhang
چکیده

Hydrogen constitutes nearly half of all atoms in proteins and their positions are essential for analyzing hydrogen-bonding interactions and refining atomic-level structures. However, most protein structures determined by experiments or computer prediction lack hydrogen coordinates. We present a new algorithm, HAAD, to predict the positions of hydrogen atoms based on the positions of heavy atoms. The algorithm is built on the basic rules of orbital hybridization followed by the optimization of steric repulsion and electrostatic interactions. We tested the algorithm using three independent data sets: ultra-high-resolution X-ray structures, structures determined by neutron diffraction, and NOE proton-proton distances. Compared with the widely used programs CHARMM and REDUCE, HAAD has a significantly higher accuracy, with the average RMSD of the predicted hydrogen atoms to the X-ray and neutron diffraction structures decreased by 26% and 11%, respectively. Furthermore, hydrogen atoms placed by HAAD have more matches with the NOE restraints and fewer clashes with heavy atoms. The average CPU cost by HAAD is 18 and 8 times lower than that of CHARMM and REDUCE, respectively. The significant advantage of HAAD in both the accuracy and the speed of the hydrogen additions should make HAAD a useful tool for the detailed study of protein structure and function. Both an executable and the source code of HAAD are freely available at http://zhang.bioinformatics.ku.edu/HAAD.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Theoretical studies of Nanostructures onto Hydrogen Adsorption on V-surface

We have studied the adsorption processes of H2 on the V (100) surface of Vanadium using self consistent field theory.Dissociative adsorptions of H2 are significantly favored compared to molecular adsorptions. There is a significant charge transfer from the first layer of the vanadium surface to the Hydrogen atoms. Three possible adsorption sites, top, bridge and center site, were considered in ...

متن کامل

Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization.

Most protein structural prediction algorithms assemble structures as reduced models that represent amino acids by a reduced number of atoms to speed up the conformational search. Building accurate full-atom models from these reduced models is a necessary step toward a detailed function analysis. However, it is difficult to ensure that the atomic models retain the desired global topology while m...

متن کامل

Hybrid ANFIS with ant colony optimization algorithm for prediction of shear wave velocity from a carbonate reservoir in Iran

Shear wave velocity (Vs) data are key information for petrophysical, geophysical and geomechanical studies. Although compressional wave velocity (Vp) measurements exist in almost all wells, shear wave velocity is not recorded for most of elderly wells due to lack of technologic tools. Furthermore, measurement of shear wave velocity is to some extent costly. This study proposes a novel methodolo...

متن کامل

Study of Human Albumin Protein Interaction with Fluorouracil Anticancer Drug Using Molecular Docking Method

Introduction: Drugs are mainly delivered to the target tissues by plasma proteins, such as human serum albumin, in the human body. Practical information about the thermodynamic parameters of drugs and their stability can be obtained using simulation methods, such as molecular docking. Material & Methods: This study, investigated the molecular docking of human serum albumin with fluorouracil an...

متن کامل

Computational Study of Chemical Properties of Xylometazoline and the Connected form to Fullerene (C60) as a Medicine Nano Carrier

In this research at the first, xylometazoline hydrochloride drug (XY) and its fullerene connected form (FXY) were optimized. Natural Bond Orbital (NBO) calculations for these compounds were carried out at the B3LYP/6-31G* quantum chemistry level, in the gas phase and the liquid phase. These calculations can be performed at different accuracy levels depending on the aim of the theoretical study....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009